The Oxyfuel Research Rig at E.ON
New Build & Technology

David Couling
Coal Research Forum AGM and Combustion Division
Meeting
Drax, April 2012
Contents

1. Introduction
2. Combustion Test Facility (CTF)
3. Corrosion
4. Oxyfuel Coals and Projects
5. Plant Start Up and Emissions
6. Other Findings
7. Questions
1. Introduction

- Process Engineer
- E.ON 2006-
- Combustion, flue gas cleaning, oxyfuel
- R&D and Engineering projects
1. Introduction - ENT

- Mission is to add value to the E.ON group via operational support, by supporting the new build program and in the future by research, development and innovation.

- ~1100 employees +

- 2 main office locations

Technology Centre, Nottingham, UK

Humboldt-Forum Gelsenkirchen, Germany
1. Introduction - ENT

- Outage & Maintenance
- Materials & Engineering
- Pressure Parts
- Power Plant Chemistry
- Turbines
- Power Engineering Services
- Electrical Engineering
- Networks
- Fuel Sciences
- Emission Monitoring

- Plant Performance
- Flexible Operation
- Life Extension
- Biomass Fuels
- Gas Turbine Optimisation
- Steam Turbine Performance
- Business Modelling
- Stimulator Training Systems

- Risk Management
- Plant Status Review
- Maintenance Strategy
- Due Diligence
- Owner's Engineer
- Quality Assurance
- Sustainable Energy
- Technology Development
- Project Management

- New Technologies
- CCS
- Emission Modelling
- New Build Optimisation
- Nuclear Development

Pollution Abatement
2. 1MWth Combustion Test Facility

- Design and Planning in 1980's with commissioning in early 1990's
- Located at Ratcliffe on Soar, Nottingham, England
- Time-temperature scaled to simulate full scale plant
- Fuel flexible - Coal, biomass, oil, orimulsion, gas, additives, others
- Full combustion staging; overfire air, reburn
- Highly instrumented and controllable
- Other capabilities added such as TOMERED
- Graduated update to oxyfuel capability with FGR from 2006
- 100's data points auto logged (X, T, P, F, ...)

- Used to study fuel quality effects on combustion, emissions, slagging, fouling and corrosion. Research in LN combustion, atomisers, combustion additives, trace emissions, instrumentation, oxyfuel combustion, biomass co-firing and 100% firing, ash behaviour, heat flux...
2. 1MWth Combustion Test Facility

Original Schematic Depicting Physical Layout
2. CTF Data

<table>
<thead>
<tr>
<th>Thermal input</th>
<th>1 MW\textsubscript{th} (0.8 – 1.2MW\textsubscript{th})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnace</td>
<td>Horizontally fired, refractory lined, water cooled, balanced draft</td>
</tr>
<tr>
<td>Dimensions</td>
<td>1m x 1m x 3m</td>
</tr>
<tr>
<td>Burner</td>
<td>Scaled MBEL Mk III Low-NO\textsubscript{X}</td>
</tr>
<tr>
<td>Windbox temp.</td>
<td>300 to 330°C</td>
</tr>
<tr>
<td>Primary air temp.</td>
<td>80°C (70 to 90°C)</td>
</tr>
<tr>
<td>Tertiary : secondary</td>
<td>3.5:1 (1:1 to 7:1)</td>
</tr>
<tr>
<td>Overfire air</td>
<td>15% (0 to 25%)</td>
</tr>
<tr>
<td>Flue gas cleanup</td>
<td>High efficiency cyclone</td>
</tr>
</tbody>
</table>
2. CTF History and Milestones

- Commissioned 1993
- At commissioning switch to include LNB 1993
- Coal reburning added 1996
- Lignite firing 1997
- Fuel logistics upgrade 1997
- Biomass co-firing 2002
- On-line PF blending 2002
- 100% biomass firing 2004
- TOMERED loop 2005
- Oxyfuel commissioning 2006
- Oxyfuel system upgrade 2009
2. CTF Diagram Pre Oxy
2. CTF Diagram Post Oxy
2. CTF Pictures
3. Precision Metrology Corrosion Probes

- Metal Losses Determined Using Digital Image Analysis On Polished Cross Sections
- Optical & Electron Microscopy Used to Characterise Damage & Mechanisms
- Multiple port allow simultaneous testing of all important corrosion variables; tube material, metal temperature, gas environment (reducing, oxidising) and heat flux
3. Precision Metrology Corrosion Probes

Furnace Wall:
Single Specimen
Air Cooled
(15Mo3, T23, T91, HR3C, IN671)

Superheater / Reheater:
Multiple Specimens
Air Cooled
(T22, T91, E1250, Super304H, TP347HFG, HR3C, Sanicro25, IN740)
3. Superheater / Reheater Corrosion

- Comparison With T22 Pilot Scale Data Air Coal Firing
- Left – Oxy-Fuel Firing T22 Data Broadly Similar Or Slightly Elevated Rates
- Right – Oxy-Fuel Firing Austenitic Data Wide Range Responses

Cleaner Coals & Lower Heat Flux: Little Or No Attack
Dirty Coals (Higher Cl In Particular & High Heat Flux: Increased Wastage Rates – Occasionally Greater Than T22 Wastage Rates
4. Oxyfuel Coals and Projects

- Coals fired in oxyfuel
 - Kleinkopje (SA), El Cerrejon (Col.), Tselentis (SA), Thoresby, Daw Mill, Harworth, Williamson (USA), Cutacre.
 - Corrosion coals – S (0.6% - 3%+), Cl (0.02% - 0.45%)

- Projects
 - ASSOCOGS (RFCS)
 - Supplier burner testing
 - Oxycoal I (DTI)
 - “OxySOx” (TSB)
 - Oxycoal II – HFCCAT programme (TSB)
 - Project H0639C (TSB)
 - ASPECT (TSB)
5. Plant Start Up and Emissions
6. Other Findings

- Safe start up, change over and operation demonstrated
- Early, low O2 enrichment tests demonstrated poorer combustion (CO, LOI, flame detachment) compared to air firing
- More recent higher enrichment tests have shown similar to better combustion compared to than air (CO, LOI)
- High levels of CO2 in the fluegas (80%+ dry) possible
- Similar/slight increase in conc. of NOx
- Increased conc. of SO2 by factor of 3-4
- Reduced mass rates of SO2 and NO (mg/MJ fuel)
- Similar ash composition but with increased S and trace elements
- Evidence of increased superheater / reheater corrosion rates for austenitic stainless steels and nickel based alloys.
- More complex operation and control – expanded system with feedback loops.
7. Close and Questions

- Any follow on question feel free to contact me

- David.couling@eon.com
- 02476 192724